Graph Neural Networks

GNNs are a type of neural network designed to work with data that can be represented as graphs. They excel at capturing relationships between nodes (vertices) and their connections (edges). GNNs aggregate information from a node's neighbors to learn and predict properties or classifications based on the graph's structure. They’re useful in applications like social network analysis, recommendation systems, and molecular chemistry.

 

    Related Conference of Graph Neural Networks

    March 09-10, 2026

    14th Global Summit on Artificial Intelligence and Neural Networks

    Singapore City, Singapore
    April 29-30, 2026

    MECHATRONICS CONFERENCE 2026

    Dubai, UAE
    December 09-10, 2026

    25th International Conference on Big Data & Data Analytics

    Amsterdam, Netherlands

    Graph Neural Networks Conference Speakers

      Recommended Sessions

      Related Journals

      Are you interested in