Graph Neural Networks

GNNs are a type of neural network designed to work with data that can be represented as graphs. They excel at capturing relationships between nodes (vertices) and their connections (edges). GNNs aggregate information from a node's neighbors to learn and predict properties or classifications based on the graph's structure. They’re useful in applications like social network analysis, recommendation systems, and molecular chemistry.

 

    Graph Neural Networks Conference Speakers

      Recommended Sessions

      Related Journals

      Are you interested in